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ABSTRACT 

A method is developed for treating the motion of a cold front in a simphfied model 
having a single space dimension. With this method it is not necessary to follow the 
“particles” at the front, hence the programming of the numerical scheme is simpler than 
in previous methods. Calculations of “equilibrium” state and motion of the front due 
to inflow of cold air at the north proved numerically stable through prolonged periods 
both for a single layer model and for a two layer model. The “equilibrium” sohttious 
for both models are similar. The time dependent solutions for these models show 
qualitative agreement in the’ motion of the front and in the velocity distribution. 
However, the solutions for the two models differ quantitively. 

INTRODUCTIQN 

This paper develops a simple method for calculating the motion of a co1 
in a single space dimension. The new feature of the method involves 
‘“inserting” a very shallow layer of cold air over that portion of the groun 
is covered by warm air. With this technique it is not necessary, as it was in a prevnous 
paper by Kasahara, Isaacson and Stoker ([3], [4]), to devise a special s to 
follow the “particles” at the front-hence the programming of the talc iS 

indeed simpler. Furthermore, it may prove to be possible to extend the met to 
treat the full two-dimensional model. In this event it should be possible to ~~rn~~t~ 
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of the United States Government. 

67 



68 ALTERMAN AND ISAACSON 

well into the occlusion phase more readily than it could be done by the method 
of [3]. (In the one-dimensional model, the Coriolis force remains constant, hence 
the results may only have physical significance for a short time-the principal 
reason for making these calculations is to verify that we can safely avoid following 
the frontal particles. In Section 7, we give another application of this method by 
computing the river flood that results from breaking a dam.) 

The initial state of the dynamical system consists of a cold wedge of air at the 
ground with a warm layer over it. Fig. 1 shows the wedge pointing from north to 

GROUND NORTHY 

FIG. 1. Vertical cross section of the wedge of cold air. 

south (in the negative y-direction). Initially the velocity in both layers is constant 
and in the direction of the x-axis (to be thought of as the eastward direction). To 
make the problem one dimensional, we neglect the x-dependence of all quantities 
involved. The fluid in each layer is assumed to be a perfect incompressible fluid 
with constant density subject to gravity. 

1. EQUATIONS 

Upon following the notation of [3] neglecting x-dependence, and adding resist- 
ance terms R and R’ the equations of motion become 

Ut + Vu, = --g [$ h; + (1 - %, h”] - fu + R 

v; + v’v; = -ghj - fu’ + R’ 

and the equations of continuity are 
ht + vh, + hv, = 0 

(h’ - h)t + v’(h’ - h), + (h’ - h) v:, = 0. 

(2) 

(3) 

(4) 

In the lower layer (cold air) p represents the density, h the height of the upper 
surface of the layer, and u and v represent eastward and northward velocity 



CALCULATING FRONTAL MOTION 

compo m The corresponding quantities in the upper layer are d~sting~~s~ 
primes x-components of velocity u and u’ are assumed to be constants 

’ are the y-components of the friction acting QII the t 
ese equations with appropriate initial and boundary co 

the simpler set of equations obtained by an apprQx~mate 
rmmber of dependent variables in half by simply neglecting the dynamics of the 
perturbations in the warm air layer. (On this assumptio umerical so~~t~Q~§ for 
a two space dimensional model have been given in [3]) rice, for a single layer 

odel, in one space dimension and with the inclusion of a ~r~~t~~~a~ ~~s~$~~~~~ term, 
we have 

I& + vu, + g (1 - $1 h, =f 

The friction term in Eqs. (l), (2) and (5) is taken proportional to the square of 
the y-component of the velocity, A more detailed description of t 
follows later. 

The system of partial differential equations (l)-(4) has an exact solution, corre- 
sponding to a stationary front 

v’ = 0 c-0 

The stationary solution for Eqs. (5) and (6) is given by (9) and (IO) alone. Eqs. (8) 
and (10) show that the slope of the surface of both the warm and the cold air is 
constant in ibis stationary solution. This solution corresponds to the ~onfi~~rat~o~ 
of a wedge of cold air in a region which does not include the intersection of the 
wedge surface with the earth-i.e. the front. As pointed out in ] a special nu~e~~~a 
difficulty arises from the fact that the front is a free boun y along which the 
differential equations are in a sense singular. The main purpose of this 
to find a numerical method, for determining the motion of the front, wit 
labor of following the front from one time step to another. To this end, 
at time t = 0 there is no cold air on the ground, we insert a quite thin layer of co 
air. Hopefully this device will be useful in the numerical solution of the front 
problem for two space dimensions. 
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2. INITIAL : COND~ONS ’ 
,‘. 

At the time t = 0: the front of the cold air layer is located at y = y. ; within 
the region 0 < y < Y the surface of the layer has constant slope for yc < y < Y 
and is at a given constant level for 0 < y G ,yC . Fig. 2 shows the shallow layer of 

FIG. 2. Vertical cross section of the two air layers. 

cold air in front of the wedge. By choosing the slope of the wedge to be equal to the 
slope in the stationary solution, the initial conditions for Eqs. (l)-(4) become 

v’ = 0 (11) 

h” = hi(y - y,) + h; (12) 

(13) 

v=o (14) 

h = h,(Y - Yo) + he (15) 

(16) 

here h” = h’ - h denotes the depth of the warm air above the surface of the cold 
air and h: and h, are constants having the values of h” and h respectively at y = y0 . 
The initial conditions for Eqs. (5) and (6) are given by (14)-(16) alone. 
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These initial conditions do not .in general constitute a steady state so~~t~~~~ For 
example, on neglecting resistance, we find an initial a~~e~erat~Q~ in the s 
layer of cold air. That is, in this layer at the initial time, 

( 

I 
v,=f L&u = const # (17) 

P i fQr 0 < y < ye 

(unless (p’/p)u’ = 24). 

3. BOUNDARY CONDITIONS 

The point y = 0 is assumed to be far enough from the cold front so t&t 
boundary conditions here do not influence the front. The only condition to 
satisfied, is that no additional disturbance should propagate from y = 
the region 0 < y < Y. At y = Y conditians can be prescribed in a var 
ways, depending on the physical conditions assumed to hold there. We cons~de~e 
the following cases: 

(a) v(Y, t) and h(Y, t) determined by extrapolation from y < Y. 
(b) Same as in (a), if v(Y, f f At) > 0; ‘other&se set v(Y9 t + At) = 

(c) P&low of cold air into the wedge either periodically varying in time (with 
period T), or increasing to a constant flow velocityS 

or 

4. THE RESISTANCE TERM 

The resistance terms in Eqs. (l), (2) and (5) are similar to the hydraulic resistance 
for flow in a channel. They account mainly for the slowing down of the flow in the 
shallow layer of cold air to the south of the cold front. In Eq. (I), for the csl 
take 

and in Eq. (2) for the warm air 
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In the single layer case, Eqs. (5) and (6), when h” and v’ do not occur explicitly, 
h” in Eq. (20) is absorbed into the coefficient, and the resistance term in Eq. (5) is 
written as 

VIVI R==Xh. (22) 

The right hand side of Eq. (22) is the same as the Chewy formula for the hydraulic 
resistance for flow in a channel [7]. Mintz [S] assumes the horizontal frictional 
force to depend on the vertical stress, and takes it specifically at the surface of the 
earth to be proportional to v 1 v I, as did Phillips [6]. Now the y-component of the 
three dimensional equations of motion includes the term (l/p)(%,/Q). Here 7;d is 
the y-component of the frictional stress acting across a horizontal surface and p 
stands for pressure. The factor I/h in (22) enters through an approximation to the 
p-derivative, since the hydrostatic assumption implies that Ap, the change in 
pressure from the top to the bottom of the cold air layer, is proportional to h. 

5. DIMENSIONLESS VARIABLES 

The following new dimensionless variables are introduced in the case of the 
two layered model, Eqs. (l)-(4), (1 l)-(16) and (20~(21) 

7 = t/At Y, = y/As A = At/As 
(23) 

8 = Au 6’ = hv’ Ii = X2gh 22” = X2gh”. 

At and As denote units for time and length with ratio A, a suitably determined 
constant. Also we define the following new parameters: 

G = fudth G’ = fu’AtX 
(24) 

P = oIAsXJg2 P’ = UP u = p’lp. 

With the aid of (23) and (24), Eqs. (l)-(4) could be written in dimensionless form. 
But we find it convenient to further simplify the equations. We now drop the 
circumflex and use v to represent the dimensionless velocity, G, in the lower layer, 
in addition we introduce new variables w, cj and # by 

v=d w=fi 4 = 22/h * = 2$di” (25) 
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ations (l)-(4) then become 

0, + vv, + +qLJl& + &b& = -G + 16P ?-!-!2 
4621%2 

w, + ww, + &!gJv + *$b+* = --6’ + 16 

47 + 4 + ad% = 

$J7 + w$k + 4&% = 0. 

e initial conditions are rewritten as 

w=o 

4 = 2[h,“(r] - 7,) + hy2 

v=o 

dimensionless variables in the case of the equations for a single layer, are 
defined in a slightly different fashion. 7,~ h and Z are defined as in Eq. (23). A, 6, 
will r~ow be defined in the following way 

G = fAtA ig u’ - u (321 

P = aAthg (1 - $1. (331 

y introducing C$ = 22/k and omitting the circumflex symbols, i.e. set.ting 
2: = 8, Eqs. (5) and (6) for the single layer become 

v7+vvV+g+$,=G+4B~ 
4” 

(34) 

+?I + #Jv, + vr$?l = 0. (33 
The initial conditions (14)-(16) become here 

v=o 
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6. DIFFERENCE EQUATIONS 

The finite difference scheme chosen is similar to the scheme used in [3]. The grid 
intervals in the y ,direction are chosen to be equal to ds, the time-increments 
equal d t, so that the increments &I, and AT in 7 and 7 are unity. (The finite 
difference scheme is accurate to terms of second order and we will retain the symbol 
8~ in some of the subsequent formulae in order to make this fact transparent.) 

The difference equations are obtained by first replacing time derivatives by 
first order centered differences, e.g. 

[fJ(T,T + 07) - +j, 41/07 = 47, 7 + 1) - 47],T> cz f&(77, 7 + g>, (37) 

a formula which is accurate to second order in 47. All space derivatives occur 
multiplied by one of the dependent variables. The space derivatives are to be 
approximated at time 7 + + and the variable factor is replaced by the arithmetic 
mean of its values at T and 7 + 1. With the notation 

(u> = 8b(% 7 + 1) + o(rl, 41, 
the difference equations for (26)-(29) may be derived by first setting 

4% 7 + AT) 

= z&, T) - GAT + 16P (v> [&],+,, AT - 47 [<+ $ (7, 7 
z 

+ ;AT) 

= w(q, 4 - G’AT + 16P’ (w> [#],,?,, AT - AT [(w) g (?, 7 + ; AT) 

+~(~)~(,;T+:AT)+::~,‘~(~,T+:~T~] 

The quantities that are to be evaluated at (ye, 7 + +A,), are expressed in terms of 
their Taylor series expansions about (7, T) up to terms of first order in AT which 



CALCULATING FRONTAL MOTION 75 

e~snres that (39) is correct to second order in 
occurring in these Taylor series are then replaced by space derivatives 
use of the differential equations. AU space derivatives are then appr 
centered differences. The result is a set of four linear equations 
the point 7 and at the time T + 47, namely 

here the coefficients are 

F,, = 1 + ; w;+ll2 - 8~’ 

(44) 

Equations (40)-(43) are then solved, and the functions at the time T + 1 are 
obtained explicitly in terms of the known values of the functions at the time T. 

The finite difference approximations to the equations for the single layer 
are obtained in a similar fashion. 
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7. WAVES IN SLOPING CHANNELS 

In order to check the numerical procedure for solving the frontal motion problem, 
we obtained the solution of a simple problem governed formally by the same equa- 
tions and treated by a different method in [2]. 

The equations of motion and continuity for unsteady nonlinear waves in a 
sloping channel, with hydraulic resistance are 

kv I v I vt + vu, + gh, + h = m 

ht + vh, + hv, = 0 (46) 

with depth h, particle velocity v, distance along the channel y, coefficient of 
resistance k,3 and slope of the channel -m. Dressler [l] considered the problem 
without friction and Whitham [8] gave an expansion for the solution without slope. 

As an illustrative example, we consider the specific unsteady reservoir discharge 
problem with initial conditions shown in Fig. 3. The triangular wedge of water 
in the reservoir is initially at rest (v = 0) with a horizontal surface and depth Hat 
the y-coordinate where the dam is located. The dam is removed at time t = 0. 

7 
FIG. 3. The initial state of a reservoir on sloping ground. 

This is the dam break problem for the case of no water in front of the dam. Its 
solution will be obtained numerically as a limiting case of the dam break problem 
with water in front of the dam. We first treated cases where the slope is zero and 
later solved a problem with a sloping channel. 

The difference equations which we had described for solving equations (5) and (6) 
are now applied to Eqs. (45) and (46) with dy = As = 5000 ft, X = At/As = 
-0024 sec/ft, k = 0, m = 0, and g = 32.15 ft/se?. Fig. 4 shows the well known 
solution (e.g. see [7]) in the case of a small horizontal layer of water in front of the 
suddenly removed dam. In this and the subsequent calculations, the dam is placed 
at y = 100 units and its location is indicated by the arrowhead (one unit is lo4 
feet). The initial depth of water in the reservoir is H = 250 feet, the depth of water 

3 Note that we have used the symbol a for the resistance coefficient for air. 
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I;rc. 4. Height h and velocity v of water, 50 minutes after dam break. h, = 50 feet. 

in front of the dam is h, = 50 feet. Fig. 4 shows the distribution of h and 2~ after 50 
minutes. Fig. 5 shows the solution after 50 minutes for t problem where initi 

- h, = 200 feet, but h, = 10 feet. The hydraulic jump (bore) at the front of 
moving water is, as expected, smaller than in Fig. 4. Theoretically, the discontin 
in h should decrease to zero for h, decreasing to zero. However, it is foun 
mentally that for a given grid spacing Ay, the jump in h does not decreas 
certain value hdy . In other words, for a given grid size, the numerical results are 
significant only if h, is not too small. 

In order to overcome this difficulty, we simply treated th 
as one in which the velocity is set equal to what it is at t 
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240 - 

30 - 

t=!TOmin 
2’0 ‘.,z*- 

I 

h 

FIG. 5. Height h and velocity v of water, 50 minutes after dam break. h, = 10 feet. 

DISTANCE IN UNITS OF lo4 FEET 

(a simple extrapolation). Fig. 6 shows the solution after 60 minutes when initially 
H - h, = 200 ft and 15; = 1O-6 ft. The limiting depth for extrapolation of velocity 
was h,, = .OlH = 2 ft. The solution shown in Fig. 6 agrees with the expected 
result (e.g. see [7]) for flow into a dry channel. 

The same method of solution was then applied while taking hydraulic resistance 
into account. Fig. 7 shows the result for a resistence coefficient of k = 0.0108, 
h, = 1 ft and H, hdv , h unchanged from the values used in the example for Fig. 6. 
The depth h( y, t) has now the shape calculated and drawn by Whitham [S] for 
the tongue of the progressing fluid. 

The numerical results were checked by doing many calculations of the same prob- 
lem for varying values of dy with and without changing the value of A. The 
dependence on the specific finite difference scheme was also checked by using a 
simple first order scheme for several space intervals, dy, near the front of the wave. 
The results did not change appreciably. 
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DISTANCE /N UNITS OF 10’ FEET 

FIG. 6. Height h and velocity v of water, 60 minutes after dam break. No water in front 
of dam initially. 

In order to avoid the spurious oscillations which tend to appear at 
simple space averaging was performed every few time steps. That 
and height were smoothed by adding respectively to v( y, t) an 
terms 

and 

After numerical experimentation we selected fdis = .I. The use of (47) after every 
forty time steps made it possible to proceed with the computation for a 
even though somewhat smaller oscillations still developed near the bore. 
(47) after every ten steps or more often, produced quite smooth results. In all of our 
cakulatidns for figures 4-8 the smoothing formula was used after every 8 to 4 
time steps 
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FIG. 7. Effect of hydraulic resistance (LX = -0.01) on height h and velocity v of water, 
80 minutes after dam break. No water in front of the dam initially. 

We finally treated a case where the bottom had a gentle slope. Fig. 8 shows the 
solution in a sloping channel at the time t = 70 min. The slope is py1 = 0.0001, 
h, = 1O-6 ft, and the depth H - h, = 200 ft just above the dam, initially. The 
program worked without any further change. The depth of water decreases linearly 
behind the dam at the initial instant. The upper portion of the reservoir still shows 
this effect after 70 minutes since the rarefaction wave hasn’t reached the upstream 
end of the pool. 

8. RESULTS FOR THE SINGLE LAYER MODEL OF FRONT& MOTION 

After experimenting with the numerical scheme on the dam break problem, 
we then applied the same method to the single layer model of frontal motion. 
The following values of the parameters were chosen in the cases we next describe: 
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FIG. 8. 70 minutes after dam break in a sloping channel. h is the depth of water above the 
sloping ground. 

As = 5.104 ft 
At = 120 set 

h = .0024 sec/ft 
Y= 3OOAs 

yc = 2OOAs 
g = 32.1521 ft/seS 
f = 10-4 see-l 
u = 10 ft/sec 

!?I- U’ = 50 ft,lsec 
P 

g (1 - 5) = 0.6 ft/sec2 

As explained earlier we used the smoothing formulae (47) ~eg~~a~~y (wit 
frequency in each case ranging from 8-40 time steps). 
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a. “STATIONARY” STATE 

We first computed with the initial conditions (14)-(16) and the boundary condi- 
tion of no inflow of cold air from the north. :These produced stable, essentially 
stationary results for various values of h, , 1O-s < h, < 1 (in feet) and for various 
values of the resistancecoefficient - 1O-2 < 01 < 0. By “essentially stationary” we 
mean that the variation of h( y, t) in time is negligible. That is, for 0 < t < 1000 min, 
we found the phase ,lag ‘&I, t), defined by h(y, t) = h(y +. p(y, t), 0), satisfied 

1 P(Y, t>l -=c 3~ for 1 y - yc 1 < lOAs, 
while 

I P(Y, t>l + for 1 y - yG j > lOAs 
From Eq. (17), we expect v(y, t) to increase in time. The increase is slowed down 
by the hydraulic resistance throughout the region 0 < y < yC . However ZI is not 
constant for a given time. There is an increase in velocity near y0 . Fig. 9 shows the 
results after 1000 minutes, when we used h, = .l and LY. = -.OOOl. The height h of 

I -  

I -  

, -  

I -  

, -  

t=KXOmin 

DISTANCE IN UNITS OF lo5 FEET 

FIG. 9. “Stationary” state after 1000 minutes: The’arrow indicates the initial location of 
the front. 
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the cold layer has not changed appreciably from its initial vah..te. The velocity o has 
a small positive value, except for a short range of y near yC where v reaches a 
maximum value, 21,,, , of about 24 ft/sec. Through a series of ~a~c~atio~s with 
different values of a: we found that, as expected, zi,, decreases with ~~~~~asi~~ 
resistance coefficient / 01 /. However, we noted that the ratio of ~~~~~~~/~~~, 1) 
imreases with increasing 1 01 j. 

. INFLOW OF COLD AIR FROM THE NORTH 

Next we treated the case with the initial conditions (14)~(161, but with cokd air 
coming in periodically from the north, that is, 

F > 0. 

The motion in 0 < y < Y is found to be stable for various values of the a~~~~t~~~ 
period T considered. 

t =202 min 

0 -20 
0 30 60 90 1‘20 150 

DISTANCE IN UNITS OF lO5 FEET 

FIG. 10. Oscillatory inflow of cold air at north with period T = 100 min, amplituk 
Vn = 10 ft/sec. h and u after 202 minutes. The arrow indicates the initial location of the front. 
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f =2602 min 

0 30 60 ! 
DISTANCE IN UNITS OF lo5 FEET 

FIG. 11. Oscillatory inflow of cold air at north with period T = 100 n-k, amplitude 
V, = 10 ft/sec. h and z, after 2602 minutes. The arrow indicates the initial location of the front. 

Figs. 10 and 11 show the motion in the case V, = 10 ft/sec and T = 100 min. 
Fig. 10 exhibits the oscillations in height and velocity that have developed after 202 
minutes, Fig. 11 shows that after 2602 minutes the front has moved to the south, 
and the maximum height has increased. The velocity oscillates around a negative 
mean value, owing to the net cold air flux coming in from the north. The disturbance 
wavelets propagate at an average velocity of about 170 ft/sec (which is in agreement 
with the “characteristic” speed), while the front moves at a rate of 6 ft/sec. The 
speed of propagation of the front is rather slow and will be discussed further sub- 
sequently. 

Increasing the maximum velocity of cold air coming in at the north, increases 
the amplitude of oscillation, the growth of maximum height of the wedge, the speed 
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gation of the front and the average velocity in 
s for VP = 50 ft/sec, after 2002 minutes have 

30 60 90 120 1.56 
DISTANCE IN UNITS OF TO’ FEET 

FIG. 12. Oscillatory inflow of cold air at north with period T = 100 tin, ~~lit~~e 
V, = 50 ft/sec. h and zi after 2002 minutes, The arrow indicates the initial location of the fronL 

Upon decreasing the period of the cold air inflow to T = 
velocity inside the cold wedge (except for a small interval 
follow the input velocity oscillations, and the depth of the wedge is foun 
respond only slightly. Fig. 13 shows the result for VD = 10 ft/sec, after 28 
Fig. 14 shows the result for the larger velocity maximum, VP = SO ft/sec, 
minutes. In the latter case the values of z, and h are comparable to the mean values 
(over one oscillation) of the values of velocity and depth which arise from the i 
of longer period, shown in Fig. 12. 
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FIG. 13. Oscillatory inflow of cold air at north with period T = 10 min, amplitude 
V, = 10 ft/sec. h and v after 202 minutes. The arrow indicates the initial location of the front. 

Next, we consider a different time-variation of the inflow of cold air from the 
north, given by 

i.e., a gradual increase in absolute value of velocity up to its maximum value 2VD , 
which is then maintained at this fixed rate. Results were for V, = 10 and 50 ft/sec, 
and for T = 100, 10 and 1 minute. In all cases the front is found to gradually 
steepen and progress southward. 

Figs. 15 and 16 are for V, = 10 ft/sec, T = 10 min and 01 = -.OOl. They show 
the velocity and height after 402 and 2402 minutes respectively. We notice the 
steepening of h in Fig. 15, in the vicinity of y = 115 units, which represents the 
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0 30 60 90 720 1.9 
DISTANCE IN UNITS OF lo5 FEET 

FE. 14. Oscillatory inflow of cold air at north with period T = LO min, titude 
VP = 50 ft/sec. h and v after 2402 minutes. The arrow indicates the initial location of the front. 

wave motion created by the build up of inflow from the north. In Fig. 16 the front 
has moved a greater distance than has the front in Fig. 11 (at a slightly later 
Clearly this difference is due to the fact that in Fig. 16 the steady inflow of c 
has velocity -2 V, , while for Fig. 11 the mean inflow velocity is only - VP ~ For 
the very fast initial increase of velocity given by taking T = 1 mm, we find that 
there is no appreciable difference in the resulting flow after 402 minutes. Prior to 
402 minutes there is no noticeable irregularity due to the rapid increase of v(Y, t>. 

9. RESULTS FOR THE TWO LAYER BDEL OF FRONTAL 

The results were obtained by using the finite difference scheme 
the same constants as for the single layer model, except for At w 
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-40 - 
0 I I I I 

0 30 60 90 120 150 
DISTANCE IN UNITS OF 10’ FEET 

FIG. 15. Constant inflow of cold air, after the rise time T/2, with T = 10 min, amplitude 
V, = 10 ft/sec. The arrow indicates the initial location of the front. 

reduced in order to ensure numerical stability. We chose dt = 15 see so that 
h = At/As = .0003 sec/ft. The height of the upper surface of the warm air at the 
north side was taken to be h’( Y, 0) = 3h( Y, 0) at the initial time t = 0. That is, the 
total height of air at the north side was initially 3 times the maximum depth of the 
cold air layer. The total height is smallest at the north side and increases towards 
the south. The resistance coefficient is chosen in different cases to be in the range 
-lO-2 < CII < -lo-+ and h, = .Ol. 

a. "STATIONARY" STATE 

We considered first the “almost stationary” state given by (1 l)-(16) without any 
addition of cold air from the north. The differential equations with 01 = 0 show that 
initially the flow is not in “equilibrium” only in the shallow cold layer. We would 
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FIG. 16. Constant inflow of cold air, after the rise time T/2, with T = 10 min, ~~~~~tu~e 
V, = 10 ft/sec. The arrow indicates the initial location of the front. 

therefore expect very little motion to result. Fig. 17 shows the model after 160 
time-steps, i.e. after 400 minutes. The depth of cold air h(y, E) is hardly changed 
from its initial value. Fig. 18 shows the total height A’(y, t) and the velocity 
W(JJ, t) in the warm air at about the same time. Here also h’ is almost exactly at its 
initial value given by Eqs. (1 l)-(16). The velocity w( y, Z) has changed a bit from 
its initial value w = 0. In Fig. 17 we see that the velocity in the cold air layer is 
practicalIy zero north of the front. Also we note that U( y, 1) is essentially zero onto 
the south of the front owing to the effect of the resistance term. It is only in the 
immediate vicinity of the front that the resistance term does reduce the veloci 
to zero. The velocity curve is similar to the one in Fig. 9 for single layer case. 
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FIG. 17. Height h and velocity v of cold air for the “stationary” state in the two-layered 
model. The arrow indicates the initial location of the front. 

comparison of the “stationary” states at different times and for various values df LX!, 
-lO-2 ,( 01 < -lO-6 and several values of .Ol ,< h, < .05h(Y, 0) shows that the 
variation of v(v, t) between the single layer model and the two layer model is 
slight. The effect of varying the height of the warm air up to h’( Y, 0) = lOh( Y, 0) is 
also slight in the present case of equiIibrium initial and boundary conditions. 

This simple case shows that the numerical procedure can be applied for a 
prolonged period. It is used in the next section for a study of the motion of the 
front when cold air comes in from the north side. 

b. INFLOW OF COLD AIR FROM THE NORTH 

The boundary conditions of the problem are now changed so as to allow for a 
periodic variation of the velocity of the cold air, v( Y, t), at the north. V( Y, t) is given 
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FIG. 18. Total height h’ and velocity of warm air W, for the “stationary” state in the two- 
layered model. The arrow indicates the initial location of the front. 

as in Eq. (48). Two kinds of boundary conditions for the velocity of the warm air, 
w(Y, t), have been used: 

(i) A ‘“free” boundary condition in which w is obtained by linear ex~ra~o~at~o~ 
from values inside the region, 

ii) the condition of no flow, 

w(Y, t) = 0, t > 0. (50) 

The difference in v, h, h’ between the two cases is negligible, The warm air velocity 
w( y, t) is smaller in magnitude throughout the region yC < y < Y, when con 
(50) is applied rather than the free condition. 

Let us consider first the case when the period of oscillation is T = X49 min an 
itude is given by V, = 10 ft/sec. The constants in the equatioas are the 
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same as those used in the equilibrium case. Fig. 19 shows D and h after 12.5 minutes. 
The oscillations in velocity have propagated 15 x lo5 feet, so that their phase 
velocity c is approximately 2000 ft/sec. 
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FIG. 19. Oscillatory inflow of cold air with period T = 10 min, amplitude V, = 10 ft/sec, 
in a two layer model. h and v after 12.5 minutes. 

This value is larger than the speed of propagation of disturbances (called 
“sound speed”) in the single layer model of the cold air, but is approximately the 
sound speed for a single fluid layer of depth about 30 km. In this calculation the 
initial maximum height of the cold air as given by (11)-(16) was h(Y, 0) = h, = 
10 km while h’(Y, 0) = 30 km, since the ratio of densities was p’/p = 
31.5521/32.1521 (as assumed in Section 8). If the value of p’/p is decreased, we find 
that the maximum h, at time t = 0 decreases and also the phase velocity, c, 
decreases. With all parameters as in Fig. 19, except that p’/p = 30.1521/32.1521, 
the phase velocity decreases to c = 1333 ftjsec and the height to h, = 4.6 km. 
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Fig. 20 shows the results after 12.5 minutes, when p’/p = 
= 29.1521/32.1521 we find c = 8OOft/sec and ka, = 2.2 
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FIG. 20. Oscillatory inflow of cold air with period T = 10 min, amplitude V, = 1 
p’/p = 30.1.521/32.1521, in a two layer model. h and v after 12.5 minutes. 

When p’lp = 31.5521132.1521 and the period of oscillation is T = 10 
velocity is seen to respond with oscillations. As seen in Fig. 13, for the car 
ing single layer case, the cold air does not follow the osculations of t 
BL~, when the period of the inflow is decreased to T = 1 min, we find no os~~~~~t~o~s 
are discernible in the velocity profile for the two layer case as web as the one layer 
case. 

On the other hand, the curves h( y, t) in Figs. 19 and 20 do not have any osc 
tions. This differs from the results for the single layer model, where we &ad ssciha- 
tions in h( y, t> (for fixed t) whenever oscillations ia u (as a function of y) ~CXW. 
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FIG. 21. Oscillatory inflow of cold air with period T = 10 min, amplitude V, = 10 ft/sec, 
p’/p = 30.1521/32.1521, in a two layer model. h’ and w after 12.5 minutes. 

Fig. 21 for p’/p = 30.1.521/32.1521 shows the effect on the upper layer of warm air: 
w(v, t) oscillates while h’(v, t), like h(y, t), shows no oscillation and the slopes of 
h and h’ stay essentially at their initial values. Fig. 22 shows u and h at a later time. 
Fig. 23, for VP = 50 ft/sec, T = 100 min p’/p = 31.5521/32.1521 at time t = 250 
min, shows oscillations both in o and in h. This behavior is similar to that seen in 
Fig. 10 for a single layer. Decreasing p’/p decreases the amplitude of oscillation at 
y --c Y after a prolonged time (t > 100 min) and the velocity distribution u(y, t) 
comes closer to that of the corresponding single layer case. 

We found that increasing the initial total height at the north, HT = h’(Y, 0), by 
a factor /3, would increase the phase velocity of the oscillatory disturbance, c, by 
the factor I//?. 

The influence of varying the coefficient of resistance in the range 
- 1O-2 < a < - 10V5 is negligible. 
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FIG. 22. Oscillatory inflow of cold air with period T = 10 min, amplitude VP = 10 ftjsec, 
in a two layer model. h and v after 300 minutes. 

A comparison of results for several additional values of p’, shows that de~~~~si~g 
the density p’, decreases the speed of propagation c, and the velocity of the front. 

In conclusion, we find that the two models differ in the effect of the osc~~at~o~s 
on ?z(y, t) and on the numerical values of c and of the velocity of the front. As a 
result, there is also a shift in the range of periods T of the input function @(IT9 b), 
for which v( y, 1) is an oscillatory function of y. Such differences in wave ~ro~~gat~o~ 
properties of multilayered flow problems have been observed (e.g. see [!I]). 
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FIG. 23. Oscillatory inflow of cold air with period T = 100 min, amplitude 
in a two layer model. h and v after 250 minutes. 

v, = 50 f@cc, 
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